Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Periodontol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696461

ABSTRACT

BACKGROUND: Gingivitis is the most common form of periodontal disease among children and adolescents and is associated with disrupted host-microbiome homeostasis. Family is an important factor influencing the prevalence of gingivitis. In the present study, we investigated the salivary microbiome, oral hygiene habits, and the salivary level of myeloid-related protein (MRP)-8/14 in children aged 7-12 years with gingivitis, periodontally healthy children, and their mothers. METHODS: This study included 24 children with gingivitis (including four sibling pairs) and 22 periodontally healthy children (including two sibling pairs) and their mothers. The whole saliva was collected, DNA was extracted, the variable V3-V4 region of the eubacterial 16S ribosomal RNA gene was amplified, and sample library preparation was performed according to the Illumina protocol. The salivary levels of MRP-8/14 were analyzed by ELISA. RESULTS: Alpha diversity of the salivary microbiome was considerably higher in gingivitis children and mothers of gingivitis children compared to healthy children and their mothers, respectively. Significant differences in beta diversity between healthy and gingivitis children, healthy children and their mothers, and gingivitis children and their mothers were detected. Overall, the number of common core amplicon sequence variants between children and their own mothers was significantly higher than between children and other mothers. The salivary MRP-8/14 levels in children with gingivitis were significantly higher compared to healthy children; a similar tendency was also mentioned for mothers. CONCLUSION: Our study underlines the importance of family as an essential factor influencing oral health.

2.
J Oral Implantol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660740

ABSTRACT

A systematic review was designed to investigate the effect of treatment with oral bisphosphonate (BP) on osseointegration of dental implants and the incidence of BP-related osteonecrosis of the jaw (BRONJ) in post-menopausal women. Multiple electronic databases, including MEDLINE (PubMed), EMBASE, and SCOPUS, were searched to find all eligible articles published since 1990. All titles and abstracts retrieved by searching information sources were evaluated independently by two authors against the eligibility criteria. The number of cases ranged from 11 to 235, and the number of controls ranged from 14 to 343. Alendronate was used in all other studies. Risedronate was used in six studies, while ibandronate was used in four studies. The number of implants in cases ranged from 25 to 1267, while in controls, the number of implants ranged from 28 to 1450. The time between the placement of implant and the follow-up visit ranged from 4-6 months to 8 years. The results show that out of 2582 placed implants, 50 (1.94%) failed in BP-treated patients. This is while out of 4050 placed implants, 188 (4.6%) failed in the non-BP group. The results from the meta-analysis demonstrated that BP therapy is significantly associated with increased implant failure rates (RR (95% CI)=1.73 (1.03-2.83), p=0.04). Overall, the qualitative assessment of this review suggests that oral treatment with BPs in post-menopausal women does not increase the rate of dental implant failure. Thus, further studies with larger sample sizes should compare BP and non-BP groups in regard to dental implants.

3.
J Clin Med ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542013

ABSTRACT

Background: Fragile gingival tissue is a risk factor for the development of gingival recessions. Despite the fact that gingival recessions are more commonly seen around anterior mandibular teeth, previous research has predominantly concentrated on the gingival dimensions in the anterior maxilla. The objective was to systematically compare buccal gingival thicknesses between the upper and lower jaws in individuals with healthy gingival conditions in the aesthetic zone. Methods: A comprehensive search of three databases was carried out until October 2023. Gingival thickness differences between the maxilla and mandible were evaluated by calculating the mean differences along with the corresponding 95% confidence interval (CI). Subgroup analysis was conducted based on the measurement area, measurement method, and tooth category. Results: A total of seventeen studies were included in this systematic review. Eleven studies were included in the quantitative analysis. Quantitative analysis comparing gingival thickness around 2100 teeth in the anterior mandible to 2056 teeth in the anterior maxilla revealed a statistically significant thinner buccal gingiva in the mandible (mean difference: 0.16 mm; 95% CI [-0.24, -0.07]; p = 0.0003). Conclusions: The present systematic review revealed a more delicate buccal gingiva in the anterior mandible. However, further scientific validation is required due to the considerable heterogeneity in study design and the potential presence of confounding variables.

4.
Front Cell Infect Microbiol ; 14: 1357631, 2024.
Article in English | MEDLINE | ID: mdl-38456080

ABSTRACT

Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.


Subject(s)
Dental Caries , Humans , Streptococcus , Streptococcus mutans , Streptococcus sobrinus , Mouth/microbiology , Biofilms
5.
Orthod Craniofac Res ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520046

ABSTRACT

OBJECTIVE: The present study investigated bone remodelling in the upper and lower incisor regions depending on the inclination pattern during the alignment phase of orthodontic treatment (OT). MATERIALS AND METHODS: This prospective clinical study included 71 patients undergoing OT without premolar extraction. Cone beam computed tomography scans were taken before and after the alignment phase and the changes in the inclination, alveolar bone height (ABH) and bone thickness (BT) at levels 2, 3, 4, 6, 8 and 9 mm starting from the cementoenamel junction (CEJ) were determined. RESULTS: Teeth were divided into 'Retroinclination' (lingual crown inclination <0°), 'Proclination-low' (buccal crown inclination between 0° and 5°), or 'Proclination-high' (buccal crown inclination >5°). The alignment phase of OT resulted in ABH loss. The highest ABH loss in the maxilla was observed on the buccal side in the 'Proclination-high' and was 0.71 mm. ABH loss by 1.1 mm was observed in the mandible on the lingual side in the 'Retroinclination' group. The most significant changes in BT by up to 2 mm were observed at levels 6, 8 and 9 mm and these changes exhibited a moderate to strong correlation with the alterations in the inclination of individual incisors. At levels 2, 3 and 4 mm, the highest decrease in BT by up to 0.83 mm was observed on the palatal side of upper incisors in the 'Proclination-high' group. CONCLUSION: The direction and amount of tooth inclination partially determine changes in the bone parameters during the alignment phase.

6.
J Clin Med ; 12(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068492

ABSTRACT

The transient worsening of oral health sometimes accompanies orthodontic treatment (OT), and the extent of this effect might depend on whether the patients are treated with traditional brackets or clear aligners. Saliva is an important tool for monitoring oral health and influences the functional properties of various oral cells. This study aimed to compare the effects of saliva from patients undergoing OT with Invisalign aligners and brackets on human gingival fibroblasts and oral epithelial cells in vitro. Unstimulated saliva was collected from 15 patients treated with Invisalign and 16 patients treated with brackets before and 3 and 6 months after therapy began. The saliva was used to stimulate primary human gingival fibroblasts and the oral epithelial Ca9-22 cell line, and the resulting cell response was investigated. Saliva did not exhibit any toxic effect on investigated cells, as shown by the proliferation/viability assay with the MTT method. In human gingival fibroblasts, saliva increased gene expression of various proinflammatory mediators, such as interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1, assessed by qPCR. In epithelial cells, saliva increased the production of IL-8 measured by ELISA and decreased gene expression of various proteins involved in the barrier function. During the therapy, the saliva-induced production of IL-8 tended to be decreased, and the saliva-induced decrease in the expression of barrier protein was partially improved. No difference between aligners and brackets was observed in either cell type. Saliva affects the functional properties of oral cells, but this effect is not influenced by the type of OT.

7.
Materials (Basel) ; 16(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138649

ABSTRACT

The aesthetic constancy and functional stability of periodontium largely depend on the presence of healthy mucogingival tissue. Soft tissue management is crucial to the success of periodontal surgery. Recently, synthetic substitute materials have been proposed to be used for soft tissue augmentation, but the tissue compatibility of these materials needs to be further investigated. This study aims to assess the in vitro responses of human gingival mesenchymal stromal cells (hG-MSCs) cultured on a Gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). hG-MSCs were cultured onto the GPP, VSCM, or plastic for 3, 7, and 14 days. The proliferation and/or viability were measured by cell counting kit-8 assay and resazurin-based toxicity assay. Cell morphology and adhesion were evaluated by microscopy. The gene expression of collagen type I, alpha1 (COL1A1), α-smooth muscle actin (α-SMA), fibroblast growth factor (FGF-2), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta-1 (TGF-ß1), focal adhesion kinase (FAK), integrin beta-1 (ITG-ß1), and interleukin 8 (IL-8) was investigated by RT-qPCR. The levels of VEGF-A, TGF-ß1, and IL-8 proteins in conditioned media were tested by ELISA. GPP improved both cell proliferation and viability compared to VSCM. The cells grown on GPP exhibited a distinct morphology and attachment performance. COL1A1, α-SMA, VEGF-A, FGF-2, and FAK were positively modulated in hG-MSCs on GPP at different investigation times. GPP increased the gene expression of TGF-ß1 but had no effect on protein production. The level of ITG-ß1 had no significant changes in cells seeded on GPP at 7 days. At 3 days, notable differences in VEGF-A, TGF-ß1, and α-SMA expression levels were observed between cells seeded on GPP and those on VSCM. Meanwhile, GPP showed higher COL1A1 expression compared to VSCM after 14 days, whereas VSCM demonstrated a more significant upregulation in the production of IL-8. Taken together, our data suggest that GPP electrospun nanofibers have great potential as substitutes for soft tissue regeneration in successful periodontal surgery.

8.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003629

ABSTRACT

The differentiation ability of human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) in vivo is limited; therefore, some studies considered strategies involving their pre-differentiation in vitro. However, it is not known how the differentiation of hPDL-MSCs influences their immunomodulatory properties. This study investigated how osteogenic differentiation of hPDL-MSCs affects their ability to suppress CD4+ T-lymphocyte proliferation. hPDL-MSCs were cultured for 21 days in osteogenic differentiation or standard culture media. Allogeneic CD4+ T lymphocytes were co-cultured with undifferentiated and differentiated cells in the presence or absence of interferon (IFN)-γ, interleukin (IL)-1ß or tumor necrosis factor (TNF)-α, and their proliferation and apoptosis were measured. Additionally, the effects of these cytokines on the expression of immunomodulatory or pro-inflammatory factors were investigated. Our data show that osteogenic differentiation of hPDL-MSCs reduced their ability to suppress the proliferation of CD4+ T lymphocytes in the presence of IFN-γ and enhanced this ability in the presence of IL-1ß. These changes were accompanied by a slightly decreased proportion of apoptotic CD4+ in the presence of IFN-γ. The osteogenic differentiation was accompanied by decreases and increases in the activity of indoleamine-2,3-dioxygenase in the presence of IFN-γ and IL-1ß, respectively. The basal production of interleukin-8 by hPDL-MSCs was substantially increased upon osteogenic differentiation. In conclusion, this study suggests that pre-differentiation strategies in vitro may impact the immunomodulatory properties of hPDL-MSCs and subsequently affect their therapeutic effectiveness in vivo. These findings provide important insights for the development of MSC-based therapies.


Subject(s)
Mesenchymal Stem Cells , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , Periodontal Ligament/metabolism , Osteogenesis , Cell Differentiation , Tumor Necrosis Factor-alpha/metabolism , Mesenchymal Stem Cells/metabolism , Immunosuppressive Agents/pharmacology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cell Proliferation
9.
Clin Oral Investig ; 27(11): 6493-6502, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37843637

ABSTRACT

OBJECTIVES: This study aimed to evaluate the impact of enamel matrix derivative (EMD) application following subgingival instrumentation of residual pockets in periodontitis patients on inflammatory host response, microbiological composition, and clinical outcome. METHODS: In this double-blinded randomized controlled trial, a total of 22 patients with generalized periodontitis stage III or IV presenting with ≥ 6 mm probing pocket depth (PPD) at re-evaluation after initial periodontal therapy were included. Participants were randomly allocated at a 1:1 ratio to subgingival instrumentation with (EMD +) or without (EMD-) non-surgical EMD application into the pocket. PPD, clinical attachment level (CAL), bleeding on probing (BoP), plaque index (PI), as well as a panel of pro-inflammatory cytokines and periodontal pathogen count in the gingival crevicular fluid (GCF) of the respective sites were evaluated at baseline (T0) and six months afterwards (T1). RESULTS: Both treatment groups showed a significant PPD reduction (EMD + 1.33 ± 1.15 mm, p < 0.001; EMD- 1.32 ± 1.01 mm, p < 0.001) as well as CAL gain (EMD + 1.13 ± 1.58 mm, p < 0.001; EMD- 0.47 ± 1.06 mm, p = 0.005) from T0 to T1. While no intergroup differences for PPD reduction were observed, CAL gain was higher in EMD + sites compared to EMD- (p = 0.009). No essential effects on cytokine expression as well as bacterial count were detected. CONCLUSIONS: Application of EMD as an adjunct to subgingival instrumentation of residual pockets yielded benefits regarding CAL gain; however, effects on PPD reduction, inflammatory cytokines, and bacterial count were negligible. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04449393), registration date 26/06/2020. CLINICAL RELEVANCE: Based on the obtained results, additional non-surgical EMD application compared to subgingival instrumentation alone showed no clinically relevant effects on treatment outcome and underlying biological mechanisms.


Subject(s)
Alveolar Bone Loss , Dental Enamel Proteins , Periodontitis , Humans , Periodontitis/therapy , Dental Enamel Proteins/therapeutic use , Treatment Outcome , Cytokines , Periodontal Attachment Loss/drug therapy , Follow-Up Studies , Alveolar Bone Loss/surgery
10.
Eur J Cell Biol ; 102(2): 151319, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119575

ABSTRACT

Orthodontic treatment is based on complex strategies and takes up to years until a desired therapeutic outcome is accomplished, implying long periods of high costs and discomfort for the patient. Choosing the optimal settings for force intensities in the initial phase of orthodontic tooth movement is the key to successful orthodontic treatment. It is known that orthodontic tooth movement is mainly mediated by tensile and compressive forces that are communicated to the alveolar bone via the periodontal ligament. While the revelation of the complex molecular network was already approached by transcriptomic analysis of compressed periodontal ligament cells, the entity of molecular key players activated by tensile forces remains elusive. Therefore, the aim of this study was to assess the effect of mechanical tensile forces on the gene expression profile of human primary periodontal ligament stromal cells, mimicking the initial phase of orthodontic tooth movement. A transcriptomic analysis of tension-treated and untreated periodontal ligament stromal cells yielded 543 upregulated and 793 downregulated differentially expressed genes. Finally, six highly significant genes were found in the transcriptome that are related to biological processes with relevance to orthodontic tooth movement, including apelin, fibroblast growth factor receptor 2, noggin, sulfatase 1, secreted frizzled-related protein 4 and stanniocalcin 1. Additionally, differences of gene expression profiles between individual cell donors showed a high effect size. Closer understanding of the roles of the identified candidates in the initial phase of orthodontic tooth movement could help to clarify the underlying mechanisms, which will be essential for the development of personalized treatment strategies in orthodontics.


Subject(s)
Periodontal Ligament , Protein Interaction Maps , Humans , Periodontal Ligament/metabolism , Stress, Mechanical , Tooth Movement Techniques , Transcriptome
11.
Front Immunol ; 14: 1100041, 2023.
Article in English | MEDLINE | ID: mdl-36761739

ABSTRACT

Introduction: Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) exhibit a tight bi-directional interaction with CD4+ T lymphocytes. The hPDL-MSCs' immunomodulatory abilities are drastically enhanced by pro-inflammatory cytokines via boosting the expression of various immunomediators. 25-hydroxyvitamin D3 (25(OH)D3), the major metabolite of vitamin D3 in the blood, affects both hPDL-MSCs and CD4+ T lymphocytes, but its influence on their interaction is unknown. Methods: Therefore, primary hPDL-MSCs were stimulated in vitro with tumor necrosis factor (TNF)-α a or interleukin (IL)-1ß in the absence and presence of 25(OH)D3 followed by an indirect co-culture with phytohemagglutinin-activated CD4+ T lymphocytes. The CD4+ T lymphocyte proliferation, viability, and cytokine secretion were analyzed. Additionally, the expression of various immunomediators in hPDL-MSCs was investigated, and their implication was verified by using pharmacological inhibitors. Results: 25(OH)D3 significantly counteracted the suppressive effects of IL-1ß-treated hPDL-MSCs on CD4+ T lymphocyte proliferation, whereas no effects were observed in the presence of TNF-α. Additionally, 25(OH)D3 significantly increased the percentage of viable CD4+ T lymphocytes via TNF-α- or IL-1ß-treated hPDL-MSCs. It also caused a significant decrease in interferon-γ, IL-17A, and transforming growth factor-ß productions, which were triggered by TNF-α-treated hPDL-MSCs. 25(OH)D3 significantly decreased the production of various immunomediators in hPDL-MSCs. Inhibition of two of them, prostaglandin E2 and indoleamine-2,3-dioxygenase-1, partially abolished some of the hPDL-MSCs-mediated effects of 25(OH)D3 on CD4+ T lymphocytes. Conclusion: These data indicate that 25(OH)D3 influences the immunomodulatory activities of hPDL-MSCs. This modulatory potential seems to have high plasticity depending on the local cytokine conditions and may be involved in regulating periodontal tissue inflammatory processes.


Subject(s)
Mesenchymal Stem Cells , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , Periodontal Ligament/metabolism , Calcifediol/pharmacology , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism
12.
Clin Oral Investig ; 27(6): 2621-2628, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36565371

ABSTRACT

OBJECTIVES: This study aimed to assess levels of biomarkers associated with inflammation and tissue destruction in peri-implant crevicular fluid (PICF) of implants provided with customized or standard healing abutments during early implant healing. MATERIALS AND METHODS: Thirty implants were placed in 22 patients with partial posterior edentulism. Subsequently, test group implants (n=15) received one-piece titanium abutments that were fabricated using computer-aided design/computer-aided manufacturing (CAD/CAM). Control group implants (n=15) were provided with standard abutments. PICF collection and standardized periapical radiographs were carried out at suture removal one week later, following crown delivery after 3 months and at 6 months. Expression of C-reactive protein (CRP), interferon-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12A, IL-17A, macrophage inflammatory protein (MIP)-1α, matrix metalloproteinase (MMP)-13, osteopontin, osteoactivin, Receptor Activator of NF-κB (RANK), and TGF-ß were analyzed using a multiplex ELISA kit. RESULTS: Both groups showed a significant decrease in protein expression of CRP, IL-1ß, IL-6, IL-8, MIP-1α, osteopontin, osteoactivin, and TGF-ß, while MMP-13 levels increased during the observation period. A rise in OPG and RANK levels was detected among customized abutments. Expression of CRP was higher, whereas IL-1ß, IL-1α, and MIP-1α were decreased in control compared to test group implants after 6 months. Marginal bone loss did not depend on abutment modality. CONCLUSIONS: Both abutment types showed distinctive temporal expression of inflammatory biomarkers during 6 months following implant placement. TRIAL REGISTRATION: ISRCTN98477184, registration date 18/05/2022 CLINICAL RELEVANCE: Customized healing abutments exert similar effects on inflammation during early implant healing compared to standard healing abutments.


Subject(s)
Dental Implants , Humans , Chemokine CCL3 , Osteopontin , Pilot Projects , Interleukin-6 , Interleukin-8 , Tumor Necrosis Factor-alpha/analysis , Inflammation , Interleukin-1alpha , Transforming Growth Factor beta , Computer-Aided Design , Dental Abutments , Titanium
13.
Mol Oral Microbiol ; 38(2): 115-133, 2023 04.
Article in English | MEDLINE | ID: mdl-35964247

ABSTRACT

The recently identified bacterium Tannerella serpentiformis is the closest phylogenetic relative of Tannerella forsythia, whose presence in oral biofilms is associated with periodontitis. Conversely, T. serpentiformis is considered health-associated. This discrepancy was investigated in a comparative study of the two Tannerella species. The biofilm behavior was analyzed upon their addition and of Porphyromonas gingivalis-each bacterium separately or in combinations-to an in vitro five-species oral model biofilm. Biofilm composition and architecture was analyzed quantitatively using real-time PCR and qualitatively by fluorescence in situ hybridization/confocal laser scanning microscopy, and by scanning electron microscopy. The presence of T. serpentiformis led to a decrease of the total cell number of biofilm bacteria, while P. gingivalis was growth-promoting. This effect was mitigated by T. serpentiformis when added to the biofilm together with P. gingivalis. Notably, T. serpentiformis outcompeted T. forsythia numbers when the two species were simultaneously added to the biofilm compared to biofilms containing T. forsythia alone. Tannerella serpentiformis appeared evenly distributed throughout the multispecies biofilm, while T. forsythia was surface-located. Adhesion and invasion assays revealed that T. serpentiformis was significantly less effective in invading human gingival epithelial cells than T. forsythia. Furthermore, compared to T. forsythia, a higher immunostimulatory potential of human gingival fibroblasts and macrophages was revealed for T. serpentiformis, based on mRNA expression levels of the inflammatory mediators interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein-1 and tumor necrosis factor α, and production of the corresponding proteins. Collectively, these data support the potential of T. serpentiformis to interfere with biological processes relevant to the establishment of periodontitis.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Tannerella forsythia , Humans , Biofilms , In Situ Hybridization, Fluorescence , Periodontitis/microbiology , Phylogeny , Porphyromonas gingivalis/genetics , Tannerella forsythia/genetics , Tannerella
15.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077419

ABSTRACT

Nano- and microparticles are currently being discussed as potential risk factors for peri-implant disease. In the present study, we compared the responses of human gingival mesenchymal stromal cells (hG-MSCs) on titanium and zirconia nanoparticles (<100 nm) in the absence and presence of Porphyromonas gingivalis lipopolysaccharide (LPS). The primary hG-MSCs were treated with titanium and zirconia nanoparticles in concentrations up to 2.000 µg/mL for 24 h, 72 h, and 168 h. Additionally, the cells were treated with different nanoparticles (25−100 µg/mL) in the presence of P. gingivalis LPS for 24 h. The cell proliferation and viability assay and live−dead and focal adhesion stainings were performed, and the expression levels of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1 were measured. The cell proliferation and viability were inhibited by the titanium (>1000 µg/mL) but not the zirconia nanoparticles, which was accompanied by enhanced apoptosis. Both types of nanoparticles (>25 µg/mL) induced the significant expression of IL-8 in gingival MSCs, and a slightly higher effect was observed for titanium nanoparticles. Both nanoparticles substantially enhanced the P. gingivalis LPS-induced IL-8 production; a higher effect was observed for zirconia nanoparticles. The production of inflammatory mediators by hG-MSCs is affected by the nanoparticles. This effect depends on the nanoparticle material and the presence of inflammatory stimuli.


Subject(s)
Mercury , Mesenchymal Stem Cells , Nanoparticles , Gingiva , Humans , Interleukin-8/genetics , Interleukin-8/pharmacology , Lipopolysaccharides/pharmacology , Mercury/pharmacology , Porphyromonas gingivalis , Titanium/pharmacology , Zirconium/pharmacology
16.
Arch Oral Biol ; 143: 105527, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36055128

ABSTRACT

OBJECTIVES: This study aimed to evaluate the role of yes-associated protein (YAP) in the inflammatory processes induced in human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) by cyclic tensile strain (CTS). DESIGN: hPDL-MSCs from five periodontally healthy individuals were stimulated with 12% CTS and/or TNF-α for 24 h. YAP activity was determined by analyzing the YAP nuclear localization and the target genes expression, using immunofluorescence and qPCR, respectively. Verteporfin was used to inhibit the activation of YAP. The gene expression of interleukin (IL)-6, IL-8, vascular cell adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1 was analyzed by qPCR. RESULTS: In the absence of TNF-α, application of CTS resulted in the nuclear YAP translocation and upregulation of YAP target genes. Verteporfin inhibited the activation of YAP pathway and upregulated the basal expression of IL-6 and IL-8. TNF-α induced the activation of YAP pathway, which was inhibited by verteporfin. However, application of CTS under these conditions diminished TNF-α-induced YAP activation. TNF-α-induced expression of IL-6, VCAM-1, and ICAM-1 was inhibited after the application of CTS. Inhibition of YAP activation by verteporfin diminished TNF-α-induced gene expression of IL-6, VCAM-1, and ICAM-1, and under these conditions no inhibitory effect of CTS on these parameters was observed. CONCLUSIONS: YAP is at least partially involved in the CTS-activated mechanotransduction pathway. The effects of CTS and YAP on the inflammatory responses depend on the inflammatory environment. A better understanding of the inflammatory modulation by mechanical stress may help improve the orthodontic strategies, especially in the patient with periodontitis.


Subject(s)
Mesenchymal Stem Cells , Tumor Necrosis Factor-alpha , Cells, Cultured , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mechanotransduction, Cellular , Mesenchymal Stem Cells/metabolism , Periodontal Ligament , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Vascular Cell Adhesion Molecule-1/metabolism , Verteporfin/pharmacology , YAP-Signaling Proteins
17.
Front Oral Health ; 3: 877348, 2022.
Article in English | MEDLINE | ID: mdl-35601817

ABSTRACT

Orthodontic tooth movement (OTM) is induced by applying active mechanical forces, causing a local non-infectious inflammatory response in the periodontal ligament (PDL). As a prerequisite for OTM, the inflammation status is associated with increased levels of various cytokines and involves the interaction between immune cells and periodontal ligament stem cells (hPDLSCs). It is well established that hPDLSCs respond to orthodontic forces in several ways, such as by secreting multiple inflammatory factors. Another essential feature of hPDLSCs is their immunomodulatory activities, which are executed through cytokine (e.g., TNF-α and IL-1ß)-induced production of various soluble immunomediators (e.g., indoleamine-2,3-dioxygenase-1, tumor necrosis factor-inducible gene 6 protein, prostaglandin E2) and direct cell-to-cell contact (e.g., programmed cell death ligand 1, programmed cell death ligand 2). It is well known that these immunomodulatory abilities are essential for local periodontal tissue homeostasis and regeneration. So far, only a handful of studies provides first hints that hPDLSCs change immunological processes during OTM via their immunomodulatory activities. These studies demonstrate the pro-inflammatory aspect of immunomodulation by hPDLSCs. However, no studies exist which investigate cytokine and cell-to-cell contact mediated immunomodulatory activities of hPDLSCs. In this perspective article, we will discuss the potential role of the immunomodulatory potential of hPDLSCs in establishing and resolving the OTM-associated non-infectious inflammation and hence its potential impact on periodontal tissue homeostasis during OTM.

18.
Front Cell Infect Microbiol ; 12: 835509, 2022.
Article in English | MEDLINE | ID: mdl-35223555

ABSTRACT

Tannerella forsythia and Porphyromonas gingivalis target distinct virulence factors bearing a structurally conserved C-terminal domain (CTD) to the type IX protein secretion system (T9SS). The T9SS comprises an outer membrane translocation complex which works in concert with a signal peptidase for CTD cleavage. Among prominent T9SS cargo linked to periodontal diseases are the TfsA and TfsB components of T. forsythia's cell surface (S-) layer, the bacterium's BspA surface antigen and a set of cysteine proteinases (gingipains) from P. gingivalis. To assess the overall role of the bacterial T9SS in the host response, human macrophages and human gingival fibroblasts were stimulated with T. forsythia and P. gingivalis wild-type bacteria and T9SS signal peptidase-deficient mutants defective in protein secretion, respectively. The immunostimulatory potential of these bacteria was compared by analyzing the mRNA expression levels of the pro-inflammatory mediators IL-6, IL-8, MCP-1 and TNF-α by qPCR and by measuring the production of the corresponding proteins by ELISA. Shot-gun proteomics analysis of T. forsythia and P. gingivalis outer membrane preparations confirmed that several CTD-bearing virulence factors which interact with the human immune system were depleted from the signal peptidase mutants, supportive of effective T9SS shut-down. Three and, more profoundly, 16 hours post stimulation, the T. forsythia T9SS mutant induced significantly less production of cytokines and the chemokine in human cells compared to the corresponding parent strain, while the opposite was observed for the P. gingivalis T9SS mutant. Our data indicate that T9SS shut-down translates into an altered inflammatory response in periodontal pathogens. Thus, the T9SS as a potential novel target for periodontal therapy needs further evaluation.


Subject(s)
Porphyromonas gingivalis , Tannerella forsythia , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Humans , Immunity , Tannerella forsythia/genetics , Tannerella forsythia/metabolism
19.
J Periodontol ; 93(5): 697-708, 2022 05.
Article in English | MEDLINE | ID: mdl-34223638

ABSTRACT

BACKGROUND: Barrier membranes and bone substitute are major tools of guided tissue regeneration (GTR) after periodontal disease. Integrity of the periodontal ligament plays a key role in periodontal health, but its functionality fails to be fully re-established by GTR after disease or trauma. Microtissue models suggest an in vivo-like model to develop novel GTR approaches due to its three-dimensionality. This study aims to assess the effects of collagen membranes and bone substitute on cell viability, adhesion and gene expression of regenerative and inflammatory biomarkers by periodontal ligament cell (PDLC) microtissues. METHODS: Human PDLC microtissues and monolayers were cultured on collagen membranes or bone substitute. After 24 hours incubation, metabolic activity, focal adhesion, mRNA and protein production of collagen-type-I (COL1A1), periostin (POSTN), vascular endothelial growth factor (VEGF), angiogenin (ANG), interleukin (IL)6 and IL8 were measured by resazurin-based toxicity assay, focal adhesion staining, quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS: PDLC microtissues and monolayers were viable on collagen membranes and bone substitute, but microtissues were less metabolically active. Dominant staining of actin filaments was found in PDLC microtissues on collagen membranes. COL1A1, POSTN, VEGF, ANG and IL6 were modulated in PDLC microtissues on bone substitute, while there were no significant changes on collagen membranes. PDLC monolayers showed a different character of gene expression changes. CONCLUSIONS: PDLC microtissues and monolayers react diversely to collagen membranes and bone substitute. Further descriptive and mechanistic tests will be required to clarify the potential of PDLC microtissues as in vivo-like model for GTR.


Subject(s)
Bone Substitutes , Periodontal Ligament , Bone Substitutes/pharmacology , Collagen/pharmacology , Collagen Type I , Guided Tissue Regeneration, Periodontal , Humans , Membranes, Artificial , Vascular Endothelial Growth Factor A
20.
Clin Oral Investig ; 26(1): 609-622, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34185172

ABSTRACT

OBJECTIVES: Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. MATERIALS AND METHODS: hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. RESULTS: TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. CONCLUSIONS: Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. CLINICAL RELEVANCE: Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment.


Subject(s)
Periodontal Ligament , Tumor Necrosis Factor-alpha , Cells, Cultured , Humans , Inflammation Mediators , Stromal Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...